Brake orbits for Hamiltonian systems of the classical type via geodesics in singular Finsler metrics

نویسندگان

چکیده

Abstract We consider Hamiltonian functions of the classical type, namely, even and convex with respect to generalized momenta. A brake orbit is a periodic solution Hamilton’s equations such that momenta are zero on two different points. Under mild assumptions, this paper reduces multiplicity problem orbits for function type orthogonal geodesic chords in concave Finslerian manifold boundary. This will be used generalization Seifert’s conjecture about type.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Geodesics of Finsler Metrics via Navigation Problem

This paper is devoted to a study of geodesics of Finsler metrics via Zermelo navigation. We give a geometric description of the geodesics of the Finsler metric produced from any Finsler metric and any homothetic field in terms of navigation representation, generalizing a result previously only known in the case of Randers metrics with constant S-curvature. As its application, we present explici...

متن کامل

Homogeneous geodesics of left invariant Finsler metrics

In this paper, we study the set of homogeneous geodesics of a leftinvariant Finsler metric on Lie groups. We first give a simple criterion that characterizes geodesic vectors. As an application, we study some geometric properties of bi-invariant Finsler metrics on Lie groups. In particular a necessary and sufficient condition that left-invariant Randers metrics are of Berwald type is given. Fin...

متن کامل

Holomorphic Curvature of Finsler Metrics and Complex Geodesics

If D is a bounded convex domain in C , then the work of Lempert [L] and Royden-Wong [RW] (see also [A]) show that given any point p ∈ D and any non-zero tangent vector v ∈ C at p, there exists a holomorphic map φ:U → D from the unit disk U ⊂ C into D passing through p and tangent to v in p which is an isometry with respect to the hyperbolic distance of U and the Kobayashi distance of D. Further...

متن کامل

Minimal Period Estimates for Brake Orbits of Nonlinear Symmetric Hamiltonian Systems

In this paper, we consider the minimal period estimates for brake orbits of nonlinear symmetric Hamiltonian systems. We prove that if the Hamiltonian function H ∈ C(R,R) is super-quadratic and convex, for every number τ > 0, there exists at least one τ -periodic brake orbit (τ, x) with minimal period τ or τ/2 provided H(Nx) = H(x). §

متن کامل

Finsler Geometric Local Indicator of Chaos for Single Orbits in the Hénon-Heiles Hamiltonian

Translating the dynamics of the Hénon-Heiles Hamiltonian as a geodesic flow on a Finsler manifold, we obtain a local and synthetic geometric indicator of chaos (GIC), which represents a link between local quantities and asymptotic behavior of orbits and gives a strikingly evident, oneto-one, correspondence between geometry and instability. Going beyond the results attained using the customary d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Nonlinear Analysis

سال: 2022

ISSN: ['2191-950X', '2191-9496']

DOI: https://doi.org/10.1515/anona-2022-0222